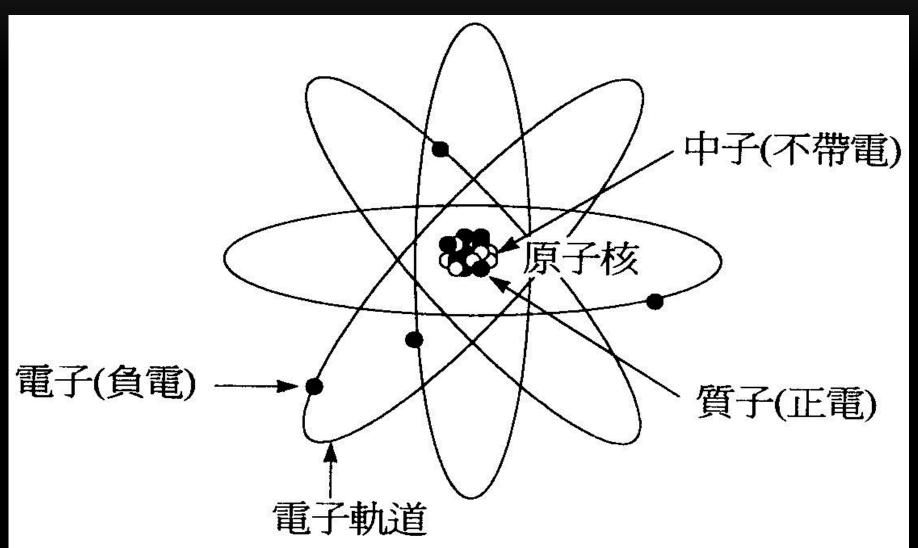
68Ga/177Lu物性及化性與在PSMA-11的 調製

姚正祥

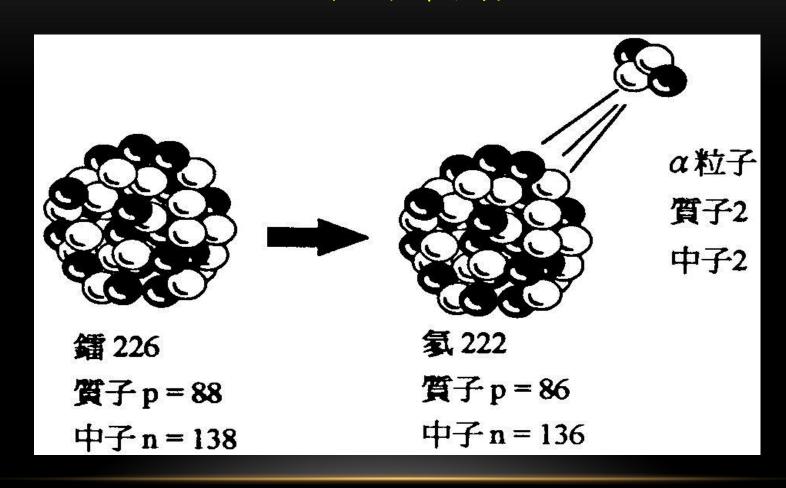

林口長庚醫院核子醫學科 10/26/2019

Outline

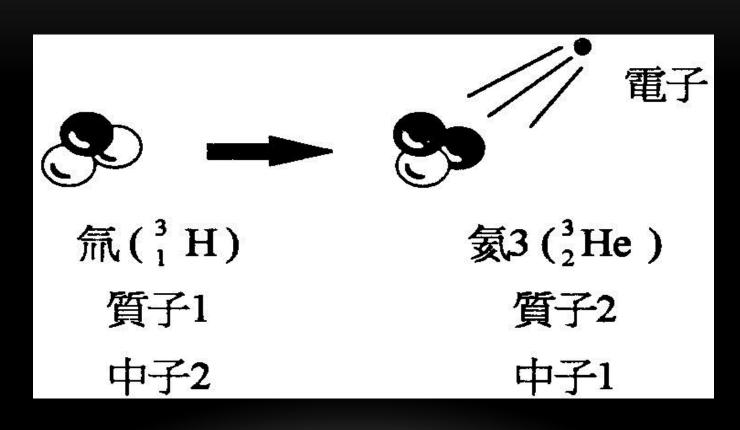
- Fundamental nuclear physics
- Radioisotope produce
- 68Ge/68Ga Generator reviews
- 68Ge/68Ga Generator Eluate quality and chemistry
- Chelating agent
- Radionuclide therapy
- Peptide receptor radionuclide therapy
- 68Ga-PSMA-11 produce

Fundamental nuclear physics

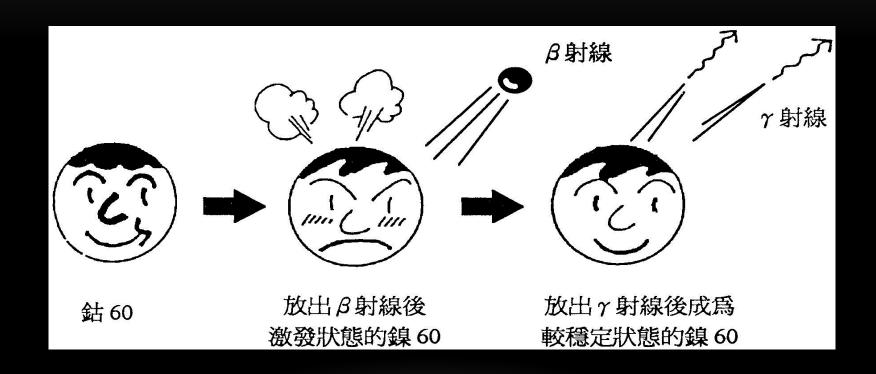
原子結構示意圖


Nuclide (核種)

- An atomic species characterized by specific values of the atomic number (Z, 原子序) and the mass number (A, 質量數)
- > Symbolized as ${}_Z^AX$ (e.g. ${}_6^{12}C$, ${}_6^{14}C$)


Radionuclide (放射核種)

- An atomic that has excess nuclear energy, making it unstable.
- This excess energy can be released by emitting from the nucleus as γ -radiation or particles (α -particle or β -particle) from the nucleus.


α-粒子輻射

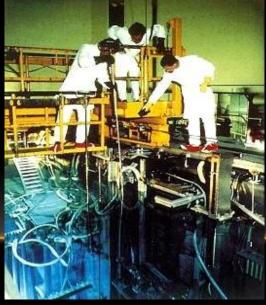
β-粒子輻射

γ-射線

Radioisotope produce

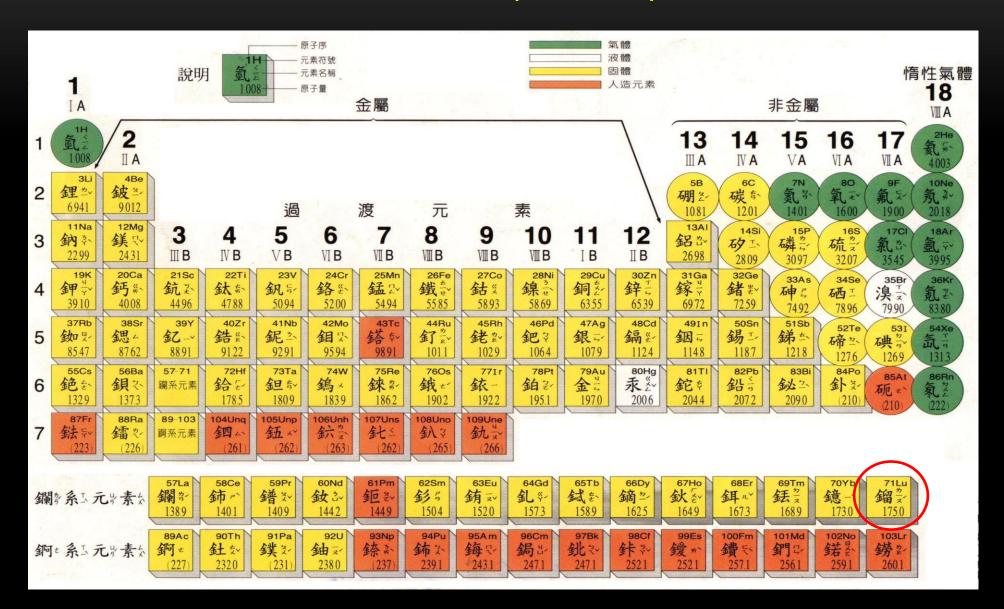
Lutetium-177 (Lu-177)

生產: 在核子反應器內以中子束照射 Lu-176 靶產生


物理半衰期: 6.647天

衰變模式: β 衰變

最大 β 能量: 0.498 MeV


主要γ能量: 112.95 keV (6.17%), 208.37 keV (10.36%)

Lutetium (Lu; 鎦)

Inorganic chemistry of Lu

- ➤ Electrons arranged in the [Xe]4f145d16s2 configuration.
- ➤ Lu atoms lose the two outermost electrons as well as the only 5d electron, thereby generating a +3 metal cationic species.
- Lutetium salts as well as their aqueous solutions, with the common exception of the iodide, are colorless and form white crystalline solids upon drying. While the nitrate, sulfate, and acetate salts are water soluble and crystallize with water molecules to form hydrates, the oxide, hydroxide, fluoride, carbonate, phosphate, and oxalate are insoluble in water.

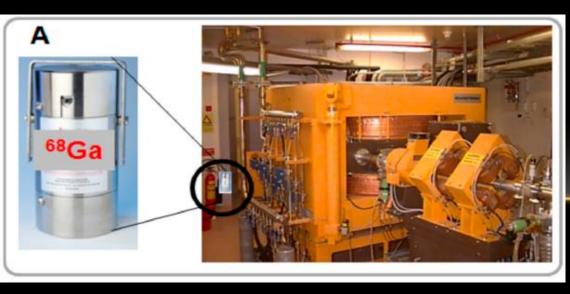
Physical properties of Lu-177

- \triangleright Lu-177 has a physical half-life of 6.647 days. Lu-177 emits β-rays that have a short range in soft tissue (average 0.23 mm, max. 1.7 mm) and γ-rays.
- > The The radionuclide is produced by the Lu-176(n,γ)Lu-177 reaction. Lu is a rare earth element with the atomic number 71.

Half-life	Type of decay	Maximum energy (MeV) of β rays and percentage emitted	Photon energy (MeV) and percentage emitted	Percentage of internal conversion electrons emitted	Effective dose rate constant (µSv•m²•MBq ⁻¹ •h ⁻¹)
6.647 days	β-	0.176–12.2% 0.385–9.1% 0.498–78.6% Other	0.113–6.4% 0.208–11.0% Other 0.0555–4.5% Hf-Kα 0.0637–1.2% Hf-Kβ	14.5% 0.73%	0.00517

Cited from Radioisotope Pocket Data Book (11th ed.), Japan Radioisotope Association, 2011

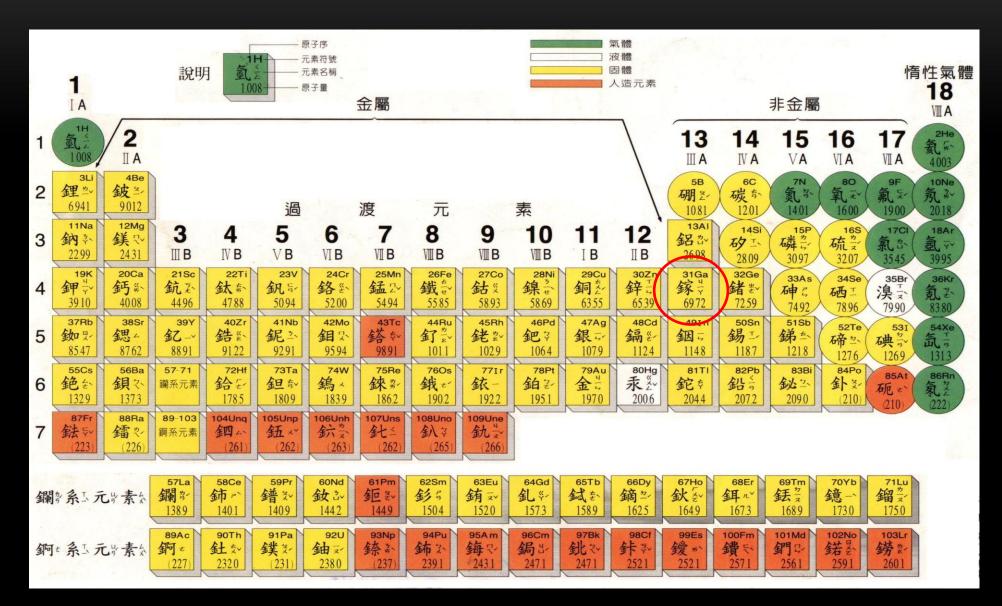
Gallium (Ga-68)


生產: 1. 在68Ge/68Ga Generator母核68Ge衰變成68Ga

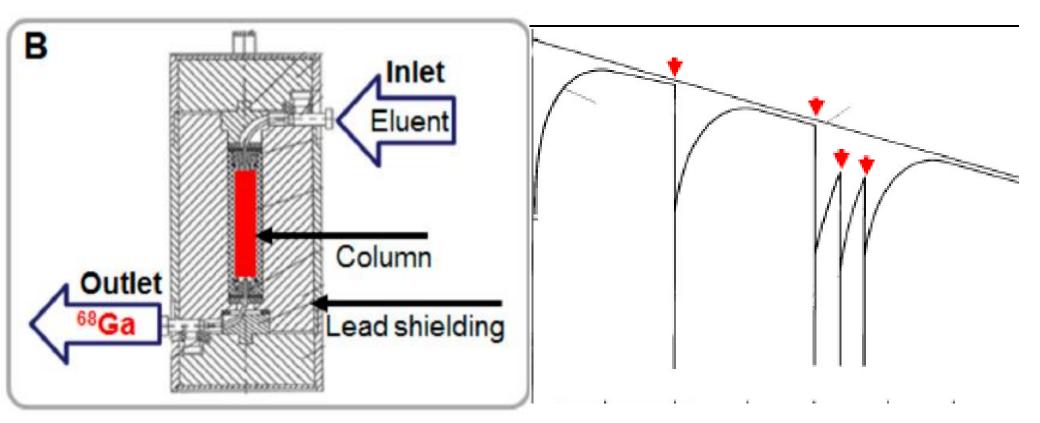
2. 迴旋加速器生產

物理半衰期: 67.71分鐘

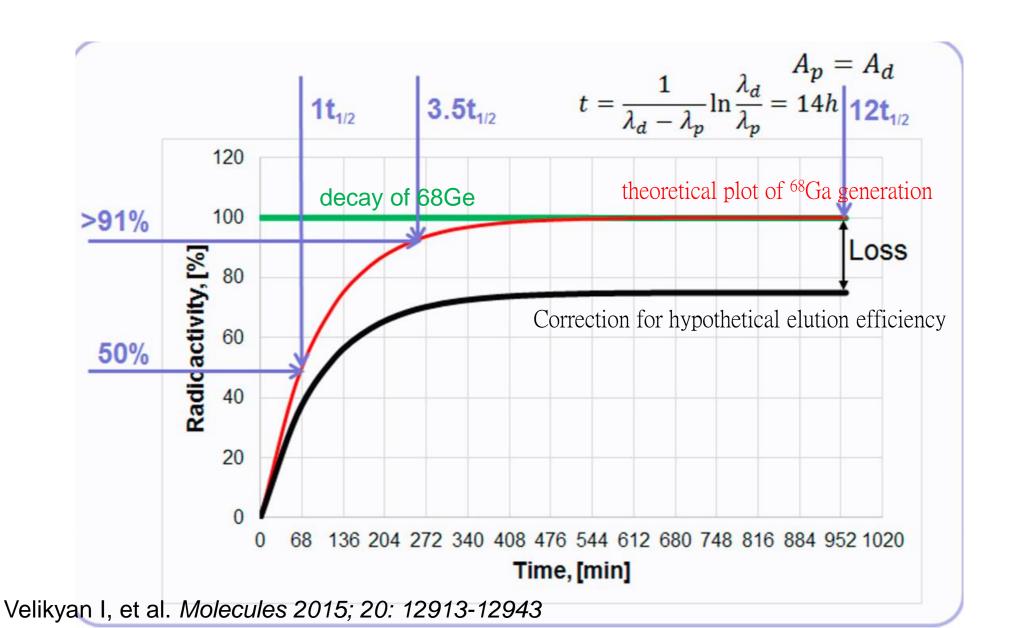
衰變模式: β* 衰變


主要γ能量: 兩道511 KeV 互毁光子

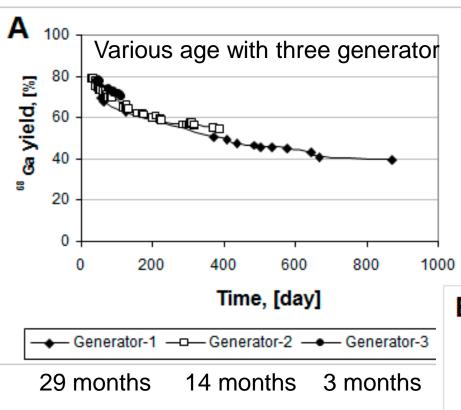
Gallium (Ga; 鎵)

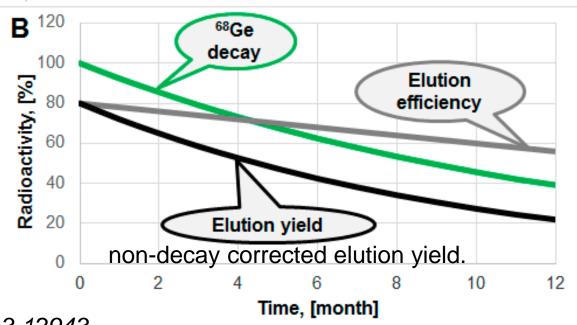

⁶⁸Ge/⁶⁸Ga Generator

$${}^{68}_{32}Ge + {}^{0}_{-1}e \rightarrow {}^{68}_{31}Ga + \nu$$


$${}^{68}_{31}Ga \rightarrow {}^{68}_{30}Zn + \beta^{+} + \nu; p \rightarrow n + \beta^{+} + \nu$$

$$\frac{t_{1/2}({}^{68}_{31}Ge)}{t_{1/2}({}^{68}_{31}Ga)} = 5762$$


- > 14hr for equilibrium
- ➤ 4hr for achieve 91%


Equilibrium with ⁶⁸Ge decay and ⁶⁸Ga accumulation

⁶⁸Ge/⁶⁸Ga Generator elution efficiency

- ➤ Highly reproducible and robust performance
- ➤ The elution efficiency depends on the 68Ge breakthrough and column matrix, and may drop in time course, however the 68Ge-decay component is larger

Velikyan I, et al. *Molecules 2015; 20: 12913-12943*

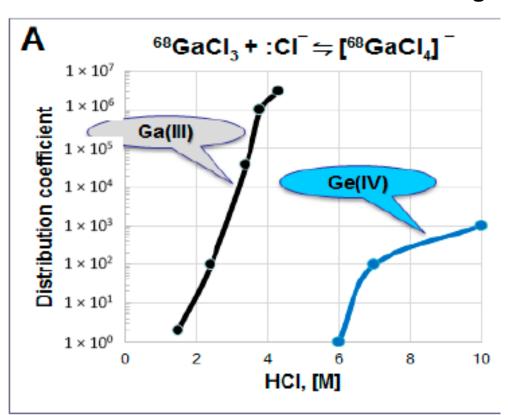
⁶⁸Ge/⁶⁸Ga Generator Column

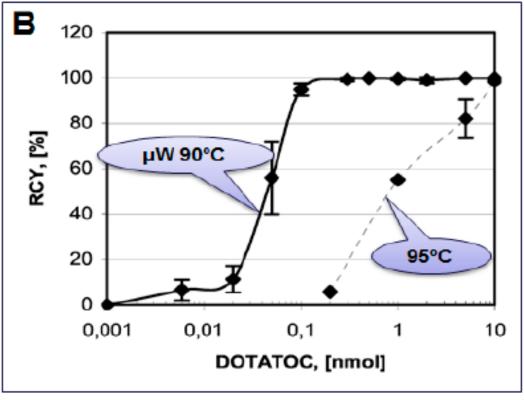
- ➤1. Radiation resistance; 2.chemical stability of the column material; 3.eluate sterility; 4.apyrogenecity; 5. ⁶⁸Ge breakthrough; 6.eluent type; 7. elution profile.
- ➤ Most of the generators use acidic eluent since it provides cationic Ga(III) for the further direct chemistry.

Various sorbents and respective eluents used in column based ⁶⁸Ge/⁶⁸Ga generators.

⁶⁸ Ge/ ⁶⁸ Ga Generator Column Matrix					
Inorganic (Eluent) Wildly used fo	r less Organic (Eluent)				
radiolysis ${ m SnO_2}(1\ { m MHCl})$ 95% of ${ m ^{68}Ga}$ in	N-methylglucamine				
2 mL	(0.1 M HCl; 0.1 M NaOH; citrate; EDTA)				
$TiO_2 (0.1 \text{ M HCl})^2$	Pyrogallol-formaldehyde (0.3 M HCl)				
CeO ₂ (0.02 M HCl)	Nanoceria-polyacrylonitrile (0.1 M HCl)				
ZrO_2 (0.1 M HCl)	⁶⁸ Ge breakthrough of <10 ⁻⁵ %				
Zr-Ti ceramic					
(0.5 M NaOH/KOH; 4 M HCl; acetate; citrate) 68Ge breakthrough of <10 ⁻³ %					
Nano-zirconia (0.01 M HCl)					

Velikyan I, et al. *Molecules 2015; 20: 12913-12943*

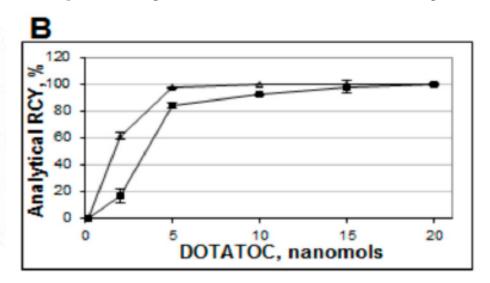

Basic methods of 68Ge/68Ga generator eluate utilization.


Method	Eluent	Volume	Cation Impurity Reduction	⁶⁸ Ge Elimination
Full volume, 5–8 mL	H ₂ O/HCl	$>$ 5000 μ L	Not purified	none
Fractionation, 1 mL	H ₂ O/HCl	1000 μL	Not purified	none
	Eluate (Concentration :	and Purification	
Anion exchange	H_2O	200 μL	One step: Al (>99%), In (>99%), Ti (90%)	Complete
Cation and and	Acetone/HCl	400 μL	Two steps: Zn ($\times 10^5$), Ti ($\times 10^2$), Fe ($\times 10$)	10 ⁴ fold
Cation exchange	NaCl/HCl	500 μL	NA	NA
	EtOH/HCl	$1000~\mu L$	Two steps: Ti (11%), Fe (×7)	400 fold
Combined cation/anion exchange	◆Acetone/HCl ◆H ₂ O/HCl	1000 μL	NA	10 ⁵ fold

⁶⁸GaCl₃ and ligand labeling chemistry

- ➤ (A) Distribution coefficient D for the adsorption of Ga(III) and Ge(IV) chloride anions on an anion-exchange resin;
- \triangleright (B) Influence of the DOTA-TOC amount on the decay-corrected radiochemical yield of the 68Ga complexation reaction in HEPES buffer system using the full available ⁶⁸Ga radioactivity in 200 µL volume obtained after the pre-concentration and purification step.

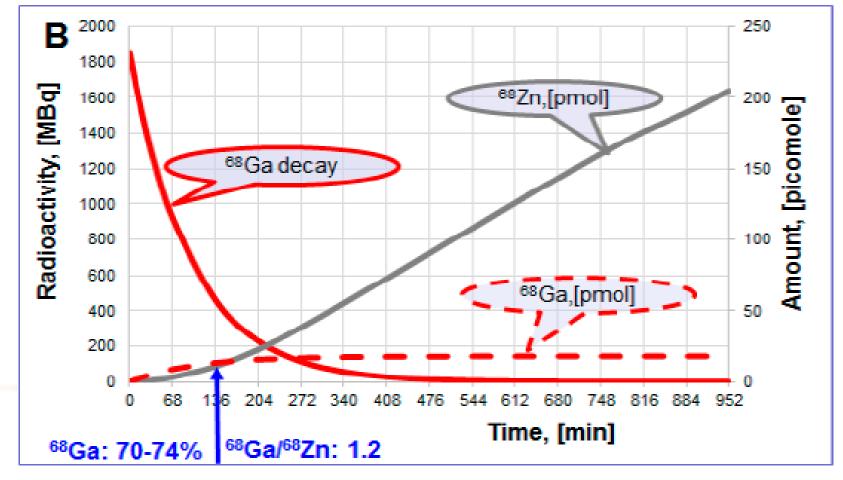
Solid line: 1 min microwave heating at 90 \pm 5 $^{\circ}$ C, dashed line: 5 min conventional heating at 95 $^{\circ}$ C.

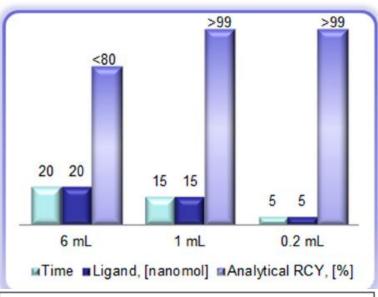


Velikyan I, et al. *Molecules 2015; 20: 12913-12943*

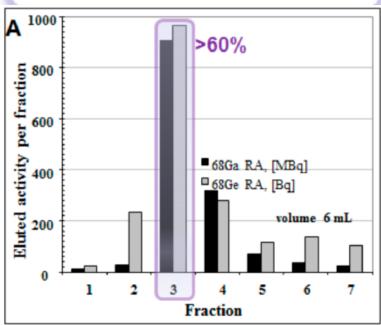
A		
pН	Species	Solubility
0-3	Ga ³⁺ ; [Ga(H ₂ O) ₆] ³⁺	soluble
3-7	Ga(OH) ₃	insoluble
>7	[Ga(OH) ₄]	soluble

- (A) Table showing formation of various species dependent on pH;
- (B) Influence of the buffering system (■ sodium acetate, Δ HEPES) on the 68Ga radioactivity incorporation for different DOTA-TOC quantities (1 min microwave heating at 90 ± 5 °C). The reaction was conducted using the 1 mL peak fraction of the original generator eluate;
- (C) Table comparing characteristics of acetate and HEPES buffers.




C

	HEPES buffer	Acetate buffer
Biocompatible	+	+
Toxicology (LD ₅₀)	Quail: 316 mg/kg)	Rat: 90 mL/kg
Stabilizing agent	+	+
Transchelation	+	+
pН	+	+
Human use	_	+
Purification	Required	Not required
QC	Required	Not required


Velikyan I, et al. *Molecules 2015; 20: 12913-12943*

- (A) Zn(II) forms thermodynamically stable complex with DOTA derivatives and interferes 68Ga-labeling reaction, especially in the excessively high concentration;
- (B) Theoretical graphs (50 mCi generator) showing 68Ga decay (MBq) and accumulation of radioactive 68Ga and stable Zn(II) in picomoles within the time frame of secular equilibrium.

- ➤ Reaction heating time (min), ligand amount (DOTA-TOC, (nanomole)), and analytical radiochemical yield (%) of the [68Ga]Ga-DOTA-TOC synthesis.
- ➤ Fraction 3 (1 mL) contains over 60% of the available 68Ga radioactivity; The profiles for the 68Ga elution and the 68Ge breakthrough are similar; the 68Ge breakthrough is ~10⁻³%.
- ➤ 1. Eluate volume, 2. HCl eluent molarity, 3. content of metal cationic impurities influence the efficiency of 68Ga-labeling chemistry. 4.pH prevention of Ga(III) precipitation and colloid formation, 5. radiolysis of vector molecules,

Velikyan I, et al. Molecules 2015; 20: 12913-12943

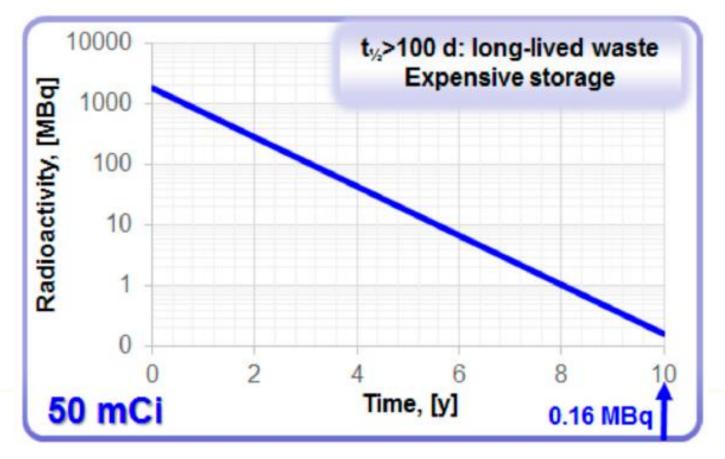
⁶⁸Ge/⁶⁸Ga Generator Development

- Efficient separation of the daughter and parent elements due to their different chemical properties;
- ➤ Physical half-life of parent allowing rapid daughter regrowth after generator elution; stable granddaughter with no radiation dose to the patient;
- ➤ Long shelf-life; effective shielding of the generator, minimizing radiation dose to the user and expenses of hot cells; sterile and pyrogen-free output of the generator
- ➤ Mild and versatile chemistry of the daughter 68Ga amenable to automation and kit preparation.

Table 3. Milestones of ⁶⁸Ge/⁶⁸Ga generator development.

Time Period	Milestone
1050 1070	First 68Ge/68Ga generator
1950–1970	Clinical applications: 68Ga-EDTA; 68Ga-citrate; 68Ga-colloid
1970-1980	Further development of 68Ge/68Ga generator: 68Ga(III)
1990s	Commercial generator: 68Ga(III)
2000s	Clinical use with advent of SST ligands
2011	GMP generators
2014	Marketing authorization

Commercial ⁶⁸Ge/⁶⁸Ga Generator


- ▶1. long shelf-life of 1–2 year; 2. stable column matrixes; 2. cationic chemical form of 68Ga(III)
- ➤ Variation in the1. molarity of HCl elution; 2.metal cation content; 3. mental cation content and ⁶⁸Ge breakthrough.

	Eckert & Ziegler Cyclotron Co. Ltd.	Eckert & Ziegle and IGG101 Pharm. G	GMP;	I.D.B. Holland B.V.	Isotope Technologies Garching
			Name of the last o		
Column matrix	TiO ₂	TiO ₂		SnO ₂	SiO ₂ /organic
Eluent	0.1 M HCl	0.1 M H	IC1	0.6 M HCl	0.05 M HCl
⁶⁸ Ge breakthrough	<0.005%	<0.001%		~0.001%	<0.005%
Eluate volume	5 mL	5 mL		6 mL	4 mL
c1	Ga: <1 μg/mC1	Fe: <10 μg/	/GBq	<10 ppm (Ga, Ge, Zn,	Only Zn from
Chemical impurity	$Ni \le 1 \mu g/mCl$	Zn: <10 μg	/GBq	Ti, Sn, Fe, Al, Cu)	decay
Weight	11.7 kg	10 kg	14 kg	26 kg	16 kg

Velikyan I, et al. *Molecules 2015; 20: 12913-12943*

Commercial ⁶⁸Ge/⁶⁸Ga Generator

- > long shelf-life may raise concern with regard to
 - 1. Radiolytic stability of column material,
 - 2. Sterility of the eluate,
 - 3. Long-lived ⁶⁸Ge waste management.

BIFUNCTIONAL CHELATING AGENT

Starctional "So chelstors 375

latis 1 Overview on Structures of the Sole Chelate Chelater (CD), Their Thermodysamic Complex Formation Stability Constant (log IV) and Typical Reaction Parameters to Active ethe High-Radiochemical Yelds (RCY) Mentioned of the [®]Ga Ligand Complexes. Also, Those Derivatives Are Included, Where [®]Ga Was Applied Instead of [®]Ga.

CL.	log K _{OM} .	Typical Radiolabeling (Buffer, p.H., Reaction Time, and Reaction Temperature)	RCY €⊝	Ref
HOOC COOH COOH	24.3			7
DTPA HO. WAR HO. W.	28.6	0.1 M ammonium acetate (pH = 4.5), 5 min, RT	98	8,9
	28.1	0.1 M sodium acetate, 10 min, RT	gy	1011
Hadedpa OCH OCH OCH OCH OCH OCH OCH	38.5	2.1 M HEPES buffer (gH = 4.2), 4 min, \approx 95°C/RT	90	12,13
HBED 100 100 100 100 100 100 100 100 100 10	-	1 Mammonium acetate, Smin, RT	90	14
NATHE AS	21.3	1 MHEPES luffer (pH = 4.8), 5 min, \approx 95°C	>90	2,15
DOTA S	31.0	1 MHEPES (gH = 3.5), 10 min, ≈ 95°C	>95	1,16

Table 1 (continued)

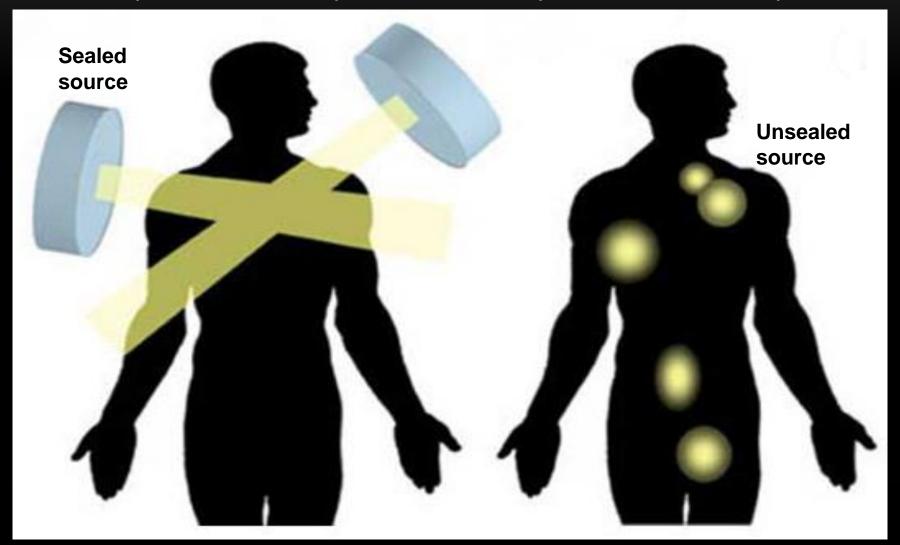
CL.	log K _{Dal} .	Typical Radiolabeling (Buffer, pH, Reaction Time, and Reaction Temperature)	RCY 60	Ref
Hooc	22.2	1 Misodium acetate (pH = 4.9), 10 min, RT	>95	17,18
HOOC HOOC	21.7	0.2 M sodum acetate, 1 min, RT	>95	19
DATA**	-	0.1 M sodum acetate, 35 min., ≈ 85°C	98	20
NH NHHN H ₂ N (NH ₂),≠sar				
	-	2 Misodium acetate (pH = 5), 5 min, RT	98	21
Fusarinine C	-	sodium acetate (dH = 4.9, 45 min, ≈ 120°C0MW0	33	22
Ord OH OF OH				
Porphyrins MW mirrowse BT momberseshes				

HBED-CC BIFUNCTIONAL CHELATING AGENT

- Acyclic radiometal chelator N,N'-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-N,N'-diacetic acid (HBED-CC) was first coupled with tetrazine and after successful synthesis, the compound was labeled with 68Ga.
- Aim of the study was to discover the potential of this compound to pass the cell membrane and to determinate its properties. The synthesis of HBED-CC-tetrazine was successfully optimized with good yields in a range of 65-85 %.
- Radiosynthesis of [68Ga] Ga-HBED-CC-tetrazine was also optimized using
 different temperatures, reaction times and precursor amounts. All conditions
 resulted in good radiochemical yields. Optimized conditions for radiolabeling
 turned out to be in 85 degrees for 20 minutes which resulted in 97 % of
 radiochemical yield with over 98 % radiochemical purity. The properties of the
 labeled compound [68Ga] Ga-HBED-CC-tetrazine were tested, such as
 lipophilicity and the stability of the compound in a presence of iron.

Radionuclide Therapy(放射核種治療)

- A form of treatment that delivers therapeutic doses of radiation to malignant tumors.
- For example, by administration of a radiolabeled molecule designed to target certain tumor cells, and kill them by radiation energy.



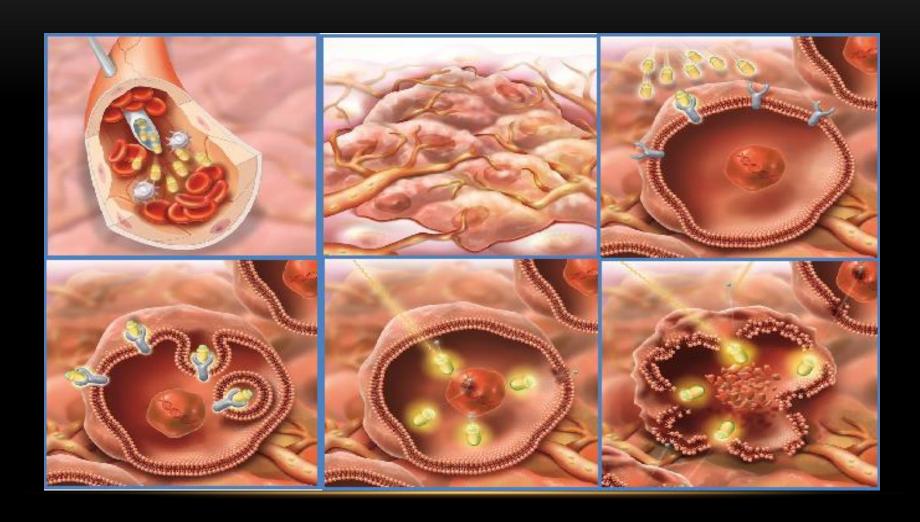
Radiation Therapy

(放射線治療)

Radionuclide therapy

(放射核種治療)

Radionuclides for Therapy

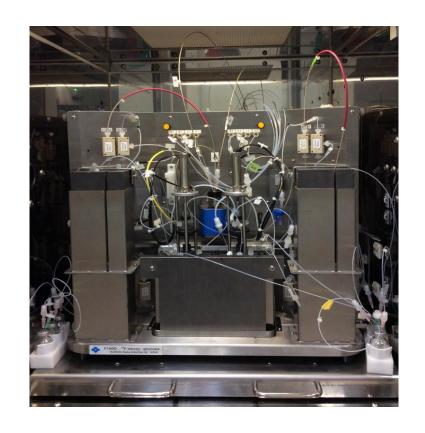

<u>Radionuclide</u>	Decay mode
I-131	$\beta + \gamma$
P-32	β
Sr-89	β
Re-186	β
Sm-153	$\beta + \gamma$
Ra-223	α
Y-90	β
Lu-177	$\beta + \gamma$

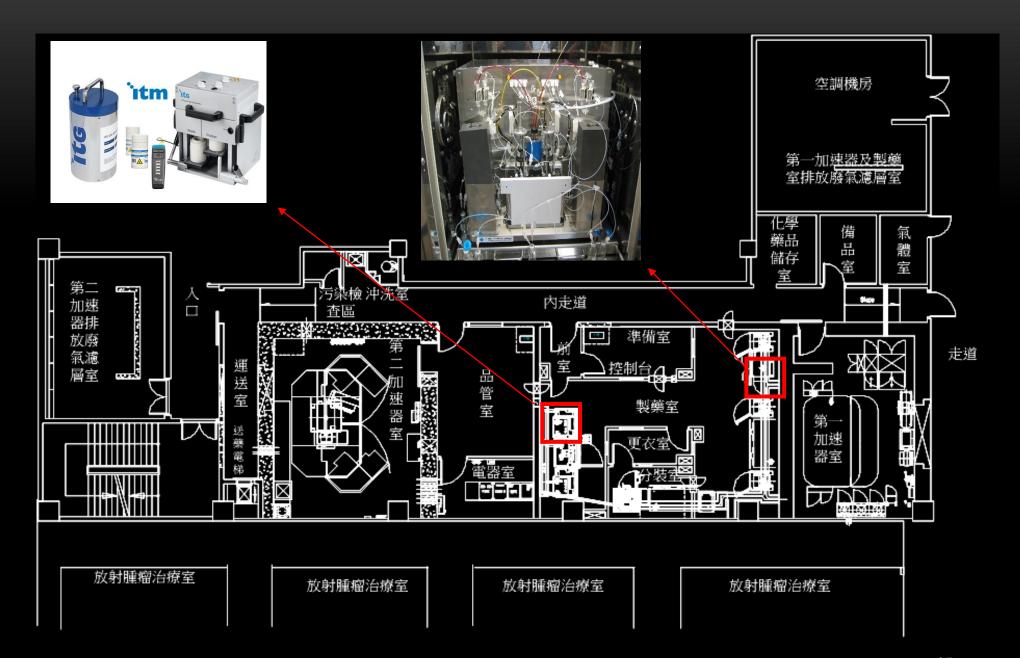
Peptide Receptor Radionuclide Therapy (PRRT)

(胜肽受體放射核種治療)

- A type of unsealed source radiotherapy.
- Using a radiopharmaceutical which targets peptide receptors to deliver localized radiation treatment.
- Typically for neuroendocrine tumors (NETs).

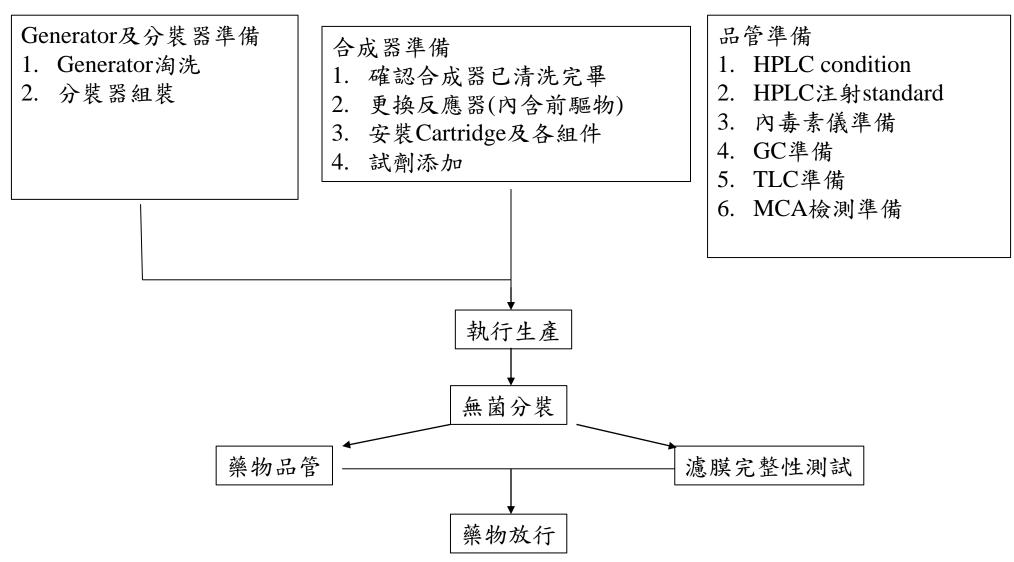
PRRT: Mode of Action

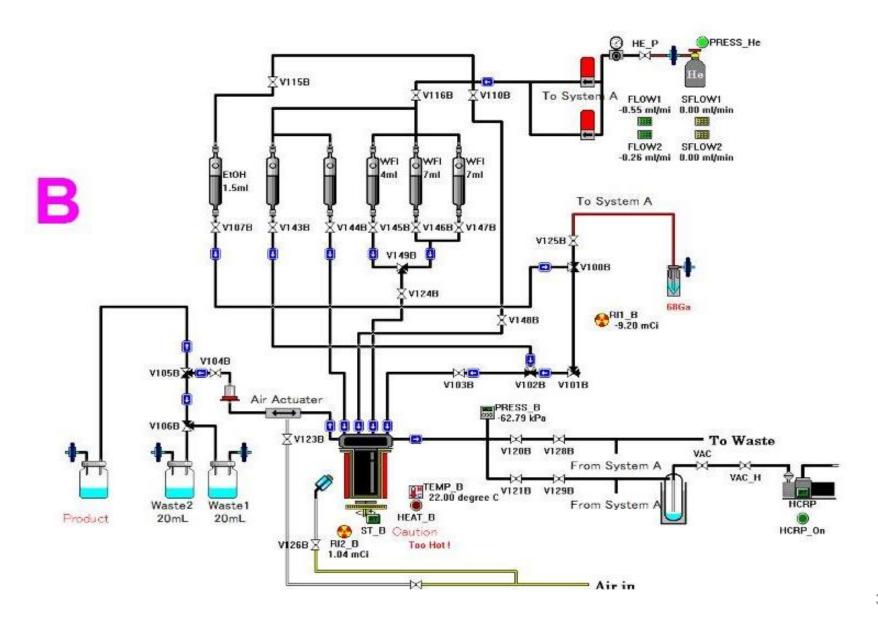

68Ga-PSMA-11合成設備


發生器: itG 68Ge/68Ga

Generator

合成器: Sumitomo F100D Module B side




⁶⁸Ga-PSMA-11合成反應

PSMA-11 ($10\mu g$) 68 Ga-PSMA-11 acetate

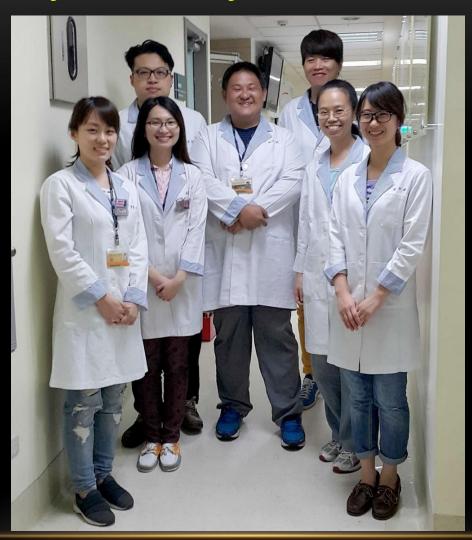
68Ga-PSMA-11調製步驟說明

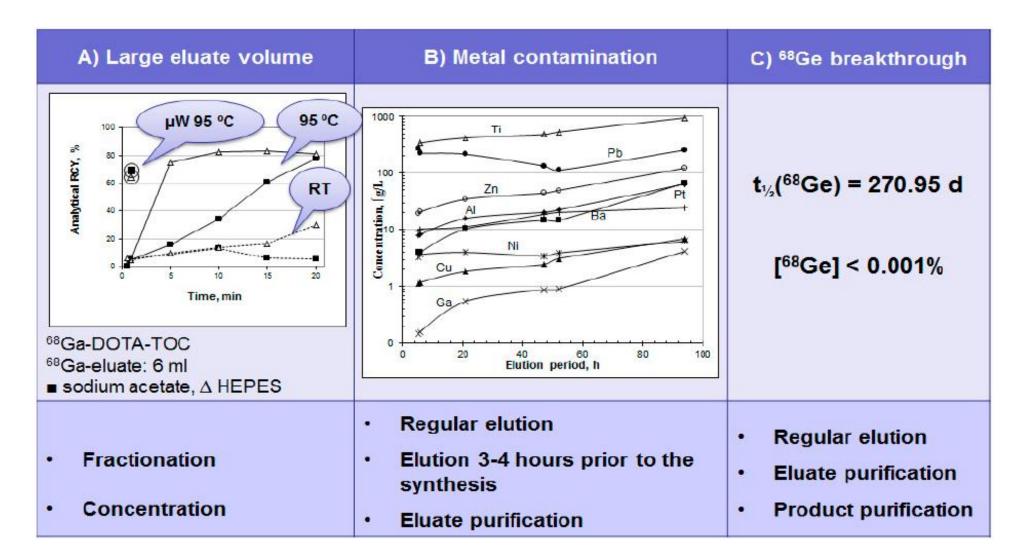
⁶⁸Ga-PSMA-11自動合成系統

68Ga-PSMA-11檢驗規格(QC)

ltems	Specification
Appearance	Clear, colorless solution with no visible particulate matter
Ethanol content	≤ 10 %
рН	4.0 < pH < 8.0
Radiochemical purity	≥ 95%
Chemical identity (API)	Relative retention with reference Standard= about 1.0 RRT = 1.00 \pm 0.05 (95%-105%)
Radiochemical impurity (68Ga in colloidal form)	≤ 3%
Radionuclidic identity (⁶⁸ Ga)	62 min ≤ T _{1/2} ≤ 74 min
Strength	≥ 0.13 mCi/mL
Radionuclidic Purity	≥ 99.9% in 0.511 MeV, 1.077 MeV, 1.022 MeV, 1.883 MeV and Compton scatter
Radionuclidic impurity (examined for at least 48 h)	Radionuclidic impurities ≤0.001%
Bacterial endotoxin	≤ 11.6 EU/mL
Sterility	Meet the requirements of the test

2017年開始自動化生產


- > ItG 68Ge/68Ga Generator
- Sodium Acetate Buffer
- > Yield=38.06 ±8.23% (n=75)



Thank you for your attention

➤ 1. eluate volume, 68Ga radioactivity concentration, 2. HCl eluent molarity, 3. content of metal cationic impurities influence the efficiency of 68Ga-labeling chemistry. 4.pH prevention of Ga(III) precipitation and colloid formation, 5. radiolysis of vector molecules,

What is different ⁶⁸Ge/⁶⁸Ga generator with ⁹⁹Mo/^{99m}Tc generator?

Preparation (99mTc)	Manufacturing (68Ga)		
Generator elution into product vial with API	Generator elution into reaction vial		
2. Labelling in the product vial	2. Labelling in the reaction vial		
	3. Purification of the product		
3. Formulation	4. Formulation		
99mTc	5. Sterile filtration		
The state of Textures	6. Quality control		
Sing More plants and the state of the state	7. Dispensing 6: QC		
4. Release Product	8. Release Synthesis module		